Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.307
Filtrar
1.
Parasit Vectors ; 17(1): 167, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566227

RESUMO

BACKGROUND: Hyalomma ticks are widely distributed in semi-arid zones in Northwest China. They have been reported to harbor a large number of zoonotic pathogens. METHODS: In this study, a total of 334 Hyalomma asiaticum ticks infesting domestic animals were collected from four locations in Xinjiang, Northwest China, and the bacterial agents in them were investigated. RESULTS: A putative novel Borrelia species was identified in ticks from all four locations, with an overall positive rate of 6.59%. Rickettsia sibirica subsp. mongolitimonae, a human pathogen frequently reported in Europe, was detected for the second time in China. Two Ehrlichia species (Ehrlichia minasensis and Ehrlichia sp.) were identified. Furthermore, two Anaplasma species were characterized in this study: Candidatus Anaplasma camelii and Anaplasma sp. closely related to Candidatus Anaplasma boleense. It is the first report of Candidatus Anaplasma camelii in China. CONCLUSIONS: Six bacterial agents were reported in this study, many of which are possible or validated pathogens for humans and animals. The presence of these bacterial agents may suggest a potential risk for One Health in this area.


Assuntos
Ixodidae , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/microbiologia , Rickettsia/genética , Ixodidae/microbiologia , Ehrlichia , Anaplasma , China
2.
Biomed Environ Sci ; 37(3): 266-277, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582991

RESUMO

Objective: The purpose of this study was to investigate the bacterial communities of biting midges and ticks collected from three sites in the Poyang Lake area, namely, Qunlu Practice Base, Peach Blossom Garden, and Huangtong Animal Husbandry, and whether vectors carry any bacterial pathogens that may cause diseases to humans, to provide scientific basis for prospective pathogen discovery and disease prevention and control. Methods: Using a metataxonomics approach in concert with full-length 16S rRNA gene sequencing and operational phylogenetic unit (OPU) analysis, we characterized the species-level microbial community structure of two important vector species, biting midges and ticks, including 33 arthropod samples comprising 3,885 individuals, collected around Poyang Lake. Results: A total of 662 OPUs were classified in biting midges, including 195 known species and 373 potentially new species, and 618 OPUs were classified in ticks, including 217 known species and 326 potentially new species. Surprisingly, OPUs with potentially pathogenicity were detected in both arthropod vectors, with 66 known species of biting midges reported to carry potential pathogens, including Asaia lannensis and Rickettsia bellii, compared to 50 in ticks, such as Acinetobacter lwoffii and Staphylococcus sciuri. We found that Proteobacteria was the most dominant group in both midges and ticks. Furthermore, the outcomes demonstrated that the microbiota of midges and ticks tend to be governed by a few highly abundant bacteria. Pantoea sp7 was predominant in biting midges, while Coxiella sp1 was enriched in ticks. Meanwhile, Coxiella spp., which may be essential for the survival of Haemaphysalis longicornis Neumann, were detected in all tick samples. The identification of dominant species and pathogens of biting midges and ticks in this study serves to broaden our knowledge associated to microbes of arthropod vectors. Conclusion: Biting midges and ticks carry large numbers of known and potentially novel bacteria, and carry a wide range of potentially pathogenic bacteria, which may pose a risk of infection to humans and animals. The microbial communities of midges and ticks tend to be dominated by a few highly abundant bacteria.


Assuntos
Ceratopogonidae , Microbiota , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Ceratopogonidae/genética , Filogenia , RNA Ribossômico 16S/genética , Estudos Prospectivos , Coxiella/genética
3.
East Mediterr Health J ; 30(2): 145-155, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38491900

RESUMO

Background: Tick-borne rickettsioses have become a health concern worldwide following the increasing incidence in recent decades. However, there is limited information about these diseases in Islamic Republic of Iran. Aim: This cross-sectional study was conducted to estimate the Rickettsia infection among ixodid ticks collected from cattle, sheep and goats in Islamic Republic of Iran. Methods: The DNA of ixodid ticks collected from cattle, sheep and goats in 54 villages of Zanjan Province, Islamic Republic of Iran, were collected and analysed using a spectrophotometer. Rickettsial-positive samples were screened by targeting the htrA gene and fragments of gltA gene were analysed. The variables were analysed using descriptive statistics and the χ2 test was used to compare the variables. Results: A total of 528 ticks were tested. Overall, Rickettsia infection rate was 6.44%. Nine of the 12 tick species were infected. Rickettsial positive rates in Hyalomma marginatum and Dermacentor marginatus were 21.33% and 12.77%, respectively. R. aeschlimannii, the predominant rickettsia, was detected only in Hy. marginatum. R. raoultii, R. sibirica and R. slovaca comprised about half of the positive ticks and were recovered from more than one tick species. Conclusion: Considering the discovery of infected ticks in the Islamic Republic of Iran, there is a need to establish a tick control programme in the country, paying attention to populations at high-risk.


Assuntos
Ixodidae , Infecções por Rickettsia , Rickettsia , Rickettsiose do Grupo da Febre Maculosa , Carrapatos , Animais , Humanos , Bovinos , Ovinos , Irã (Geográfico)/epidemiologia , Estudos Transversais , DNA Bacteriano/genética , Rickettsiose do Grupo da Febre Maculosa/epidemiologia , Rickettsiose do Grupo da Febre Maculosa/microbiologia , Rickettsia/genética , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/veterinária , Infecções por Rickettsia/microbiologia , Carrapatos/genética , Carrapatos/microbiologia , Cabras
4.
Vaccine ; 42(11): 2801-2809, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508929

RESUMO

Ticks as obligate blood-feeding arthropod vectors of pathogenic viruses, bacteria, protozoa and helminths associated with prevalent tick-borne diseases (TBDs) worldwide. These arthropods constitute the second vector after mosquitoes that transmit pathogens to humans and the first vector in domestic animals. Vaccines constitute the safest and more effective approach to control tick infestations and TBDs, but research is needed to identify new antigens and improve vaccine formulations. The tick protein Subolesin (Sub) is a well-known vaccine protective antigen with a highly conserved sequence at both gene and protein levels in the Ixodidae and among arthropods and vertebrates. In this study, transcriptomics and proteomics analyses were conducted together with graph theory data analysis in wild type and Sub knockdown (KD) tick ISE6 cells in order to identify and characterize the functional implications of Sub in tick cells. The results support a key role for Sub in the regulation of gene expression in ticks and the relevance of this antigen in vaccine development against ticks and TBDs. Proteins with differential representation in response to Sub KD provide insights into vaccine protective mechanisms and candidate tick protective antigens.


Assuntos
Infestações por Carrapato , Doenças Transmitidas por Carrapatos , Carrapatos , Vacinas , Animais , Humanos , Carrapatos/microbiologia , Mosquitos Vetores , Antígenos , Infestações por Carrapato/prevenção & controle , Proteínas de Artrópodes/genética , Doenças Transmitidas por Carrapatos/prevenção & controle
5.
Arch Microbiol ; 206(4): 149, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466437

RESUMO

Domestic yak (Bos grunniens) is an economically important feature of the mountainous region of Gilgit-Baltistan in Pakistan where agriculture is restricted and yaks play multiple roles which includes being a source of milk, meat, hides, fuel and power. However little is known about the parasitic infections in Pakistani yaks. Aim of this research was to report the prevalence and genetic diversity of protozoa parasite (Theileria ovis, 18 S rDNA gene was targeted) and an obligate bacterium (Anaplasma marginale, msp-1 gene was amplified) in the blood that was sampled from 202 yaks collected from four districts in Gilgit-Baltistan during January 2023 till January 2024. Results revealed that 6/202 (3%) yaks were of Theileria ovis while 8/202 (4%) were Anaplasma marginale infected. Positive PCR products of both parasites were confirmed by DNA sequencing and their similarity with previously available pathogen sequences was determined by BLAST analysis. Phylogenetic tree indicated that isolates of both parasites displayed genetic. Anaplasma marginale infection varied with the sampling districts and Shigar district had the highest rate of bacterial infection. Cows were significantly more prone to Theileria ovis infection than bulls. Calf and hybrid yaks were more prone to Anaplasma marginale infection. In conclusion, this is the first report that yaks residing the Gilgit-Baltistan region in Pakistan are infected with Theileria ovis and Anaplasma marginale. Similar larger scales studies are recommended in various regions of Gilgit-Baltistan to document the infection rates of these parasites to formulate strategies that will lead to the effective control of these pathogens.


Assuntos
Anaplasma marginale , Anaplasmose , Theileria , Carrapatos , Feminino , Bovinos , Animais , Ovinos , Anaplasma marginale/genética , Theileria/genética , Paquistão/epidemiologia , Anaplasma/genética , Prevalência , Carrapatos/microbiologia , Carrapatos/parasitologia , Filogenia , Anaplasmose/epidemiologia , Anaplasmose/microbiologia
6.
Ticks Tick Borne Dis ; 15(3): 102330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460340

RESUMO

In several urban and peri­urban areas of Brazil, populations of Amblyomma sculptum and Amblyomma dubitatum ticks are maintained by capybaras (Hydrochoerus hydrochaeris). In some of these areas, this host and these tick species are associated with Brazilian spotted fever (BSF), a lethal human disease caused by the bacterium Rickettsia rickettsii. In this work, we evaluated the risk of human exposure to these tick species using four collection techniques to discern host-seeking behavior. The study was carried out in 10 urban sites inhabited by capybaras in Uberlândia, a BSF-free municipality in southeastern Brazil. Ticks were collected in areas of 400 m2 at each site and at three seasons. Within the same municipality, the distance and speed of A. sculptum nymphs moving towards the CO2 traps were evaluated. In a sample of ticks Rickettsia DNA was investigated. During the study period, 52,953 ticks were collected. Among these, 83.4 % were A. sculptum (1,523 adults, 10,545 nymphs and 32,104 larvae) and 16.6 % were A. dubitatum (464 adults, 2,153 nymphs and 6,164 larvae). An average annual questing tick density of 4.4/m² was observed, with the highest density recorded at one site in autumn (31.8/m²) and the lowest in summer at another site (0.03/m²). The visual search yielded the highest proportion of A. sculptum larvae, constituting 47 % of the total and 63.6 % of all A. sculptum larvae. In contrast, CO2 traps collected a greater proportion of nymphs and adults of A. sculptum ticks. In the case of A. dubitatum, the CO2 trap was the most efficient technique with 57.7 % of captures of this species, especially of nymphs (94.5 % of captures) and adults (97.8 % of captures). Ticks' ambush height on vegetation (9 to 77 cm), observed by visual search 30 times, yielded a total of 20,771 ticks. Of these, 28 (93 %) were A. sculptum ticks, with only two (7 %) identified as A. dubitatum ticks. Among A. sculptum ticks, the nymph was the most attracted stage to humans and larva in the case of A. dubitatum. Amblyomma sculptum adults and nymphs were significantly more attracted to humans than those of A. dubitatum, but A. dubitatum larvae were significantly more attracted than the same stage of A. sculptum. The maximum distance and speed of horizontal displacement for A. sculptum nymphs were five meters and 2.0 m/h, respectively. The only species of Rickettsia detected in ticks, exclusively in A. dubitatum, was R. bellii. Importantly, it was observed that the higher the proportion of A. sculptum in the community of ticks, the lower the rate of infection of A. dubitatum by R. bellii. In conclusion, host-seeking behavior differed between the two tick species, as well as between stages of the same species. A greater restriction of A. dubitatum ticks to the soil was observed, while larvae and nymphs of A. sculptum dispersed higher in the vegetation. The behavior presented by A. sculptum provides greater opportunities for contact with the hosts, while A. dubitatum depends more on an active search for a host, the hunter behavior. Taken together, these observations show that a human being crossing an area infested with A. sculptum and A. dubitatum ticks will have almost exclusive contact with A. sculptum larvae and/or nymphs. Humans in a stationary position (sitting, lying or immobile) are exposed to both tick species, but they are more attractive to adults and mainly nymphs of A. sculptum compared to the corresponding stages of the tick A. dubitatum. The negative effect of A. sculptum on A. dubitatum infection by R. bellii deserves further studies.


Assuntos
Ixodidae , Infecções por Rickettsia , Rickettsia , Febre Maculosa das Montanhas Rochosas , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Ixodidae/microbiologia , Roedores/microbiologia , Amblyomma , Dióxido de Carbono , Febre Maculosa das Montanhas Rochosas/microbiologia , Larva/microbiologia , Brasil/epidemiologia , Ninfa/microbiologia
7.
Front Cell Infect Microbiol ; 14: 1346595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533383

RESUMO

Multiple ticks (Acari: Ixodoidea) carrying Rickettsiales bacteria have significant importance for both human and animal health. Thus, the purpose of this work was to genetically analyze tick species and their associated Rickettsiales bacteria in animal hosts. In order to achieve these objectives, various animals (including camels, cattle, goats, sheep, dogs, and mice) were inspected in four districts (Mardan, Peshawar, Kohat, and Karak) of Khyber Pakhtunkhwa to collect ticks, while blood samples were collected from all the symptomatic and asymptomatic cattle in all four districts. A total of 234 ticks were obtained from 86 out of 143 (60.14%) host animals, which were morphologically identified as Rhipicephalus turanicus, Rhipicephalus microplus, Haemaphysalis cornupunctata, and Hyalomma asiaticum. Among these, their representative ticks (126/234, 53.85%) were processed for molecular confirmation using cytochrome c oxidase (cox1) gene. Obtained cox1 sequences of four different tick species showed 99.72%-100% maximum identity with their corresponding species reported from Pakistan, China, India, and Kazakhstan and clustered phylogenetically. This study presented the first genetic report of Hy. asiaticum ticks in Pakistan. Moreover, genetically confirmed tick species were molecularly analyzed by PCR for detection of Rickettsiales DNA using partial fragments of 16S rDNA, 190-kDa outer membrane protein A (ompA), and 120-kDa outer membrane protein B (ompB) genes. In addition, blood samples were analyzed to identify Rickettsiales bacteria using the aforementioned genes. Rickettsiales bacteria were found in 24/126 (19.05%) ticks and 4/16 (25.00%) in symptomatic cattle's blood. The obtained ompA and ompB sequences from Hy. asiaticum ticks showed 99.73%-99.87% with Candidatus Rickettsia shennongii and unidentified Rickettsia sp., whereas the obtained 16S rDNA sequences from cattle's blood and ticks (Hae. cornupunctata) showed 99.67% highest identity with Anaplasma phagocytophilum. The 16S rDNA sequence of Rickettsiales DNA from Rh. turanicus ticks showed 100% identity with Ehrlichia canis and unidentified Ehrlichia sp. Obtained sequences of Rickettsiales bacteria were grouped along with their respective species in phylogenetic trees, which were previously reported in Greece, Cuba, Iraq, Turkey, Pakistan, South Korea, and China (mainland and Taiwan). This extensive study explores the wide range of damaging ticks and their corresponding tick-borne bacteria in the area, suggesting a possible danger to both livestock and human communities.


Assuntos
Ixodidae , Rickettsia , Carrapatos , Humanos , Bovinos , Animais , Ovinos/genética , Cães , Camundongos , Carrapatos/microbiologia , Filogenia , Paquistão , Genótipo , Ixodidae/genética , DNA Ribossômico/genética
8.
Acta Trop ; 253: 107172, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447703

RESUMO

Tick-borne rickettsial pathogens pose significant threats to public and animal health. In Upper Egypt, limited information exists regarding the prevalence and diversity of such tick-borne pathogens. Therefore, this study aimed to conduct a comprehensive investigation to elucidate the presence and variety of tick-borne rickettsial pathogens in Upper Egyptian camels. Our results revealed a prevalence of 2.96 % for Anaplasma marginale and 0.34 % for Candidatus Anaplasma camelii among Hyalomma ticks. However, Ehrlichia spp. weren't detected in our study. The identification of Ca. A. camelii in H. dromedari ticks was documented for the first time, suggesting a potential mode of transmission in camels. Notably, this study marks the first documentation of Rickettsia aeschlimannii with a prevalence of 6.06 % in the study area. Furthermore, we detected Coxiella burnetii in a prevalence of 8.08 % in Hyalomma ticks, indicating a potential risk of Q fever transmission. Molecular techniques results were confirmed by sequencing and phylogenetic analysis and provided valuable insights into the epidemiology of these pathogens, revealing their diversity. This study is vital in understanding tick-borne rickettsial pathogens' prevalence, distribution, and transmission dynamics in Upper Egypt. In conclusion, our findings emphasize the importance of continued research to enhance our understanding of the epidemiology and impact of these pathogens on both animal and human populations.


Assuntos
Ixodidae , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Camelus/microbiologia , Egito/epidemiologia , Filogenia , Rickettsia/genética , Ehrlichia , Ixodidae/microbiologia , Doenças Transmitidas por Carrapatos/epidemiologia
9.
Microb Pathog ; 189: 106588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369169

RESUMO

Heartwater is one of the most economically important tick-borne fatal diseases of livestock. The disease is caused by the bacteria Ehrlichia ruminantium transmitted by Amblyomma ticks. Although there is evidence that interferon-gamma controls E. ruminantium growth and that cellular immune responses are protective, an effective recombinant vaccine for this disease is lacking. Analyses of markers associated with infection as well as protection will lead to a better understanding of the E. ruminantium immune response and corresponding pathways induced in sheep peripheral blood mononuclear cells (PBMC) will assist in development of such a vaccine. In this study, Biomarkers of infection (BMI) were identified as uniquely expressed genes during primary infection and biomarkers of protection (BMP) associated with immune to heartwater were identified post challenge. Sheep were experimentally infected and challenged with E. ruminantium infected ticks. The immune phenotypic and transcriptome profile of their PBMC were compared to their own naïve PBMC collected before infection. The study revealed 305 differentially expressed genes (DEGs) as BMI, of these 17 were upregulated at all three time-points investigated. These DEGs, form part of the bacterial invasion of epithelial cells Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway, and others detected from day 1 post infection and are considered predictive markers for early heartwater infection in ruminants. Similarly, a total of 332 DEGs were identified as BMP, of these 100 were upregulated and 75 were downregulated at all three time-points investigated. However, at D1PC most DEGs were downregulated (n = 1312) that correlated with a reduction in the % CD4 and CD8 T cells detected with flow cytometry. KEGG pathway analyses showed complete down regulation of T cell specific pathways possibly due to homing of immune cells to the site of infection after acquired immunity developed. At D4PC, expression levels of most of these downregulated genes increased and by D6PC they were upregulated. This indicates that the sampling time-point for biomarker analyses is important when results for acquired immune responses are inferred. This data identified DEGs that could be considered as biomarkers of protective immunity that can be used for identification of vaccine antigens and provides a strong foundation to further development of heartwater recombinant vaccines.


Assuntos
Ehrlichia ruminantium , Hidropericárdio , Carrapatos , Ovinos , Animais , Ehrlichia ruminantium/genética , Leucócitos Mononucleares , Hidropericárdio/diagnóstico , Hidropericárdio/prevenção & controle , Vacinas Sintéticas , Carrapatos/microbiologia , Biomarcadores , RNA
10.
Infect Genet Evol ; 118: 105562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307395

RESUMO

The present study was conducted with the aim of investigating the prevalence and genetic structure of Coxiella burnetii in tick samples collected from domestic animals in Hormozgan province146 tick samples were randomly collected from cattle, sheep, goat, camel and dog herds in seven cities of Hormozgan. After the DNA was extracted from each tick sample; Nested-PCR method was used to identify the presence of C. burnetii using IS1111 transposon gene and isocitrate dehydrogenase icd gene. In addition, phylogenetic analysis and tree diagram were constructed based on IS1111 and icd genes. The results showed that out of 146 pool tick samples, 40 pool samples based on IS1111 gene and 32 pool samples based on icd gene were infected with C. burnetii. When results were stratified by livestock type, infection rates were highest in sheep ticks (37.5%, 95% CI: 21.2% - 57.29%), followed by cattle ticks (32.14%, 95% CI: 17.90% - 50.66%) and dog tick (15%, 95% CI: 70.6% - 29%). In camel and goat ticks, the infection rate was 15.90 and 23.07%, respectively. In conclusion, this study emphasizes the role of ticks as potential carriers of C. burneti. The results indicate the importance of cattle, sheep, goats, camels and dogs in Hormozgan region as effective factors in the epidemiology of Q fever and its impact on public health. In addition, a high degree of similarity (from 99% to 100%) was observed between IS1111 and icd genes in this study and recorded sequences from different regions of the world.


Assuntos
Coxiella burnetii , Carrapatos , Animais , Cães , Camelus , Coxiella burnetii/genética , Cabras , Irã (Geográfico)/epidemiologia , Filogenia , Rhipicephalus sanguineus , Carrapatos/microbiologia
11.
Parasit Vectors ; 17(1): 92, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414058

RESUMO

BACKGROUND: Haemaphysalis concinna, carrying multiple pathogens, has attracted increasing attention because of its expanded geographical range and significant role in disease transmission. This study aimed to identify the potential public health risks posed by H. concinna and H. concinna-associated pathogens. METHODS: A comprehensive database integrating a field survey, literature review, reference book, and relevant websites was developed. The geographical distribution of H. concinna and its associated pathogens was illustrated using ArcGIS. Meta-analysis was performed to estimate the prevalence of H. concinna-associated microbes. Phylogenetic and geographical methods were used to investigate the role of birds in the transmission of H. concinna-associated microbes. The potential global distribution of H. concinna was predicted by ecological niche modeling. RESULTS: Haemaphysalis concinna was distributed in 34 countries across the Eurasian continent, predominantly in China, Russia, and Central Europe. The tick species carried at least 40 human pathogens, including six species in the Anaplasmataceae family, five species of Babesia, four genospecies in the complex Borrelia burgdorferi sensu lato, ten species of spotted fever group rickettsiae, ten species of viruses, as well as Francisella, Coxiella, and other bacteria. Haemaphysalis concinna could parasitize 119 host species, with nearly half of them being birds, which played a crucial role in the long-distance transmission of tick-borne microbes. Our predictive modeling suggested that H. concinna could potentially survive in regions where the tick has never been previously recorded such as central North America, southern South America, southeast Oceania, and southern Africa. CONCLUSIONS: Our study revealed the wide distribution, broad host range, and pathogen diversity of H. concinna. Authorities, healthcare professionals, and the entire community should address the growing threat of H. concinna and associated pathogens. Tick monitoring and control, pathogen identification, diagnostic tools, and continuous research should be enhanced.


Assuntos
Babesia , Ixodes , Carrapatos , Animais , Europa (Continente) , Ixodidae/microbiologia , Filogenia , Carrapatos/microbiologia
12.
Ticks Tick Borne Dis ; 15(3): 102323, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387163

RESUMO

The Amblyomma marmoreum complex includes afrotropical species, such as Amblyomma sparsum, a three-host tick that parasitizes reptiles, birds, and mammals, and is a recognized vector of Ehrlichia ruminantium. However, the lack of morphological, genetic and ecological data on A. sparsum has caused considerable confusion in its identification. In this study, we used microscopy and metagenomic approaches to analyze A. sparsum ticks collected from a puff adder snake (Bitis arietans) in southwest Senegal (an endemic rickettsioses area) in order to supplement previous morphological descriptions, provide novel genomic data for the A. marmoreum complex, and describe the genome of a novel spotted fever group Rickettsia strain. Based on stereoscope and scanning electron microscopy (SEM) morphological evaluations, we provide high-quality images and new insights about punctation and enameling in the adult male of A. sparsum to facilitate identification for future studies. The metagenomic approach allowed us assembly the complete mitochondrial genome of A. sparsum, as well as the nearly entire chromosome and complete plasmid sequences of a novel Rickettsia africae strain. Phylogenomic analyses demonstrated a close relationship between A. sparsum and Amblyomma nuttalli for the first time and confirmed the position of A. sparsum within the A. marmoreum complex. Our results provide new insights into the systematics of A. sparsum and A. marmoreum complex, as well as the genetic diversity of R. africae in the Afrotropical region. Future studies should consider the possibility that A. sparsum may be a vector for R. africae.


Assuntos
Ixodidae , Rickettsia , Carrapatos , Masculino , Animais , Ixodidae/microbiologia , Amblyomma , Rickettsia/genética , Carrapatos/microbiologia , Mamíferos
13.
Parasit Vectors ; 17(1): 70, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374119

RESUMO

BACKGROUND: Hyalomma marginatum and H. rufipes are two-host tick species, which are mainly distributed in southern Europe, Africa to central Asia but may also be found in Central and Northern Europe through introduction by migratory birds. METHODS: Ticks were collected while feeding or crawling on animals and humans, or from the environment, in different regions in Germany, between 2019 and 2021 in a citizen science study and from 2022 to 2023 in the wake of this study. RESULTS: From 2019 to 2023, a total of 212 Hyalomma adult ticks were detected in Germany. This included 132 H. marginatum and 43 H. rufipes ticks sent to research institutions and 37 photographic records that were only identified to genus level. The number of detected ticks varied over the years, with the highest number of 119 specimens recorded in 2019, followed by 57 in 2020. Most of the specimens were collected from horses, while some were collected from other animals, humans or found crawling on human clothes or other objects inside or outside houses. The screening of 175 specimens for Crimean-Congo hemorrhagic fever virus and of 132 specimens for Babesia/Theileria spp. by PCR gave negative results, while human-pathogenic Rickettsia were detected in 44% (77/175) of the total samples. Subsequent amplicon sequencing and phylogenetic analysis of representative samples determined the species of 41 Rickettsia aeschlimannii and one R. slovaca sequences. CONCLUSIONS: Analysis of climatic factors indicated a significantly higher probability of Hyalomma occurrence at locations with higher average spring temperature during the years 2019 and 2020 compared to randomly generated pseudo-absence locations. Dry and hot conditions probably facilitated Hyalomma nymphs' survival and molting into adults during these years.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Ixodidae , Carrapatos , Humanos , Animais , Cavalos , Muda , Filogenia , Ixodidae/microbiologia , Carrapatos/microbiologia , Alemanha/epidemiologia , Temperatura Alta
14.
Infect Genet Evol ; 118: 105569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354994

RESUMO

Ticks pose significant health risks to both wildlife and humans due to their role as vectors for various pathogens. In this study, we investigated tick infestation patterns, tick-associated pathogens, and genetic relationships within the tick species Amblyomma gervaisi, focusing on its prevalence in monitor lizards (Varanus bengalensis) across different districts in Pakistan. We examined 85 monitor lizards and identified an overall mean intensity of 19.59 ticks per infested lizard and an overall mean abundance of 11.98 ticks per examined lizard. All collected ticks (n = 1019) were morphologically identified as A. gervaisi, including 387 males, 258 females, 353 nymphs, and 21 larvae. The highest tick prevalence was observed in the Buner district, followed by Torghar and Shangla, with the lowest prevalence in Chitral. Lizard captures primarily occurred from May to October, correlating with the period of higher tick infestations. Molecular analysis was conducted on tick DNA, revealing genetic similarities among A. gervaisi ticks based on 16S rDNA and ITS2 sequences. Notably, we found the absence of A. gervaisi ITS2 sequences in the NCBI GenBank, highlighting a gap in existing genetic data. Moreover, our study identified the presence of pathogenic microorganisms, including Ehrlichia sp., Candidatus Ehrlichia dumleri, Anaplasma sp., Francisella sp., Rickettsia sp., and Coxiella sp., in these ticks. BLAST analysis revealed significant similarities between these pathogenic sequences and known strains, emphasizing the potential role of these ticks as vectors for zoonotic diseases. Phylogenetic analyses based on nuclear ITS2 and mitochondrial 16S rDNA genes illustrated the genetic relationships of A. gervaisi ticks from Pakistan with other Amblyomma species, providing insights into their evolutionary history. These findings contribute to our understanding of tick infestation patterns, and tick-borne pathogens in monitor lizards, which has implications for wildlife health, zoonotic disease transmission, and future conservation efforts. Further research in this area is crucial for a comprehensive assessment of the risks associated with tick-borne diseases in both wildlife and humans.


Assuntos
Lagartos , Rickettsia , Infestações por Carrapato , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Humanos , Masculino , Feminino , Carrapatos/microbiologia , Rickettsia/genética , Ehrlichia/genética , Amblyomma/genética , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Anaplasma/genética , Filogenia , Paquistão/epidemiologia , Animais Selvagens/genética , Doenças Transmitidas por Carrapatos/epidemiologia , Zoonoses , DNA Ribossômico
15.
Comp Immunol Microbiol Infect Dis ; 105: 102113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176202

RESUMO

Ticks are obligate ectoparasites and vectors of pathogens affecting health, agriculture, and animal welfare. This study collected ticks from the cattle and questing ticks of 24 Magdalena Medio Antioquia region cattle farms. Genomic DNA was extracted from the specimens (individual or pools) of the 2088 adult ticks collected from cattle and 4667 immature questing ticks collected from pastures. The molecular detection of Babesia, Anaplasma, Coxiella and Rickettsia genera was performed by polymerase chain reaction amplification and subsequent DNA sequencing. In a total of 6755 Rhipicephalus microplus DNA samples, Anaplasma marginale was the most detected with a frequency of 2% (Confidence Interval- CI 1.68-2.36), followed by Babesia bigemina with 0.28% (CI 0.16-0.44), Coxiella spp. with 0.15% (CI 0.07-0.27), and Rickettsia spp. with 0.13% (CI 0.06-0.25). Molecular analysis of the DNA sequences obtained from the tick samples revealed the presence of Coxiella-like endosymbiont and R. felis. These results demonstrated the diversity of microorganisms present in R. microplus ticks predominantly associated with cattle and questing ticks from livestock agroecosystems, suggesting their role as reservoirs and potential biological vectors of these microorganisms on the studied sites. Also, it emphasizes the need to combine acarological surveillance with clinical diagnoses and control strategies on regional and national levels.


Assuntos
Babesia , Doenças dos Bovinos , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Bovinos , Carrapatos/microbiologia , Gado/parasitologia , Colômbia/epidemiologia , Babesia/genética , Rickettsia/genética , Doenças dos Bovinos/microbiologia , DNA , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia
16.
Exp Appl Acarol ; 92(1): 151-159, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219227

RESUMO

This study presents the results of the molecular detection of tick-borne microorganisms in Amblyomma tigrinum Koch collected near the city of Viedma, Río Negro, Argentina. Ticks were collected in their non-parasitic stage, on pet dogs and on Lycalopex gymnocercus (Pampa fox). Also, six tick samples from humans were analyzed. All ticks were morphologically identified to species level and genomic DNA was extracted. The DNA samples were examined by end point PCR assays to amplified DNA of Anaplasma sp., Babesia sp., Ehrlichia sp., Rickettsia sp. and Theileria sp. Although all tested DNA samples from the collected ticks resulted negative to the detection of Piroplasmida and Rickettsia spp., 16 samples (16.5%, including all hosts) were positive in the 16S rDNA gene PCR that detects bacteria from the Anaplasmataceae family. Phylogenetic analysis of seven obtained partial sequences resulted in the identification of three bacteria: two Ehrlichia spp. (related to Ehrlichia sp. strain Iberá and strain Viedma) and Candidatus Anaplasma boleense. The latter finding represents the first detection of this novel Candidatus species in A. tigrinum. Based on the results of this study, it must be assumed that the diversity of bacteria of the Anaplasmataceae family in Argentina is greater than previously thought, and that these bacteria can infect a wide range of domestic and wild animals.


Assuntos
Anaplasmataceae , Doenças do Cão , Ixodidae , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Humanos , Animais , Cães , Carrapatos/microbiologia , Ixodidae/microbiologia , Amblyomma/genética , Argentina , Filogenia , Ehrlichia , Rickettsia/genética , Anaplasma/genética , DNA Bacteriano/análise , Doenças Transmitidas por Carrapatos/veterinária , Doenças do Cão/parasitologia
17.
Parasit Vectors ; 17(1): 33, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273414

RESUMO

BACKGROUND: Spotted fever group Rickettsia (SFGR) is the largest group of Rickettsia species of clinical and veterinary importance emerging worldwide. Historically, SFGR cases were linked to Rickettsia rickettsii, the causal agent of Rocky Mountain spotted fever; however, recently discovered species Rickettsia parkeri and Rickettsia amblyommatis have been shown to cause a wide range of clinical symptoms. The role of R. amblyommatis in SFGR eco-epidemiology and the possible public health implications remain unknown. METHODS: This study evaluated statewide tick surveillance and land-use classification data to define the eco-epidemiological relationships between R. amblyommatis and R. parkeri among questing and feeding ticks collected across South Carolina between 2021 and 2022. Questing ticks from state parks and feeding ticks from animal shelters were evaluated for R. parkeri and R. amblyommatis using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) on pooled samples. A Bayesian multivariable logistic regression model for pool testing data was used to assess associations between R. parkeri or R. amblyommatis infection and land-use classification variables among questing ticks. The Spearman correlation was used to evaluate the relationship between the two tested pathogens. RESULTS: The infection prevalence for R. amblyommatis was 24.8% (23.4-26.3%) among questing ticks, and 39.5% (37.4-42.0%) among feeding ticks; conversely, for R. parkeri it was 19.0% (17.6-20.5%) among questing ticks and 22.4% (20.3-24.5%) among feeding ticks. A negative, refractory correlation was found between the species, with ticks significantly more likely to contain one or the other pathogen, but not both simultaneously. The Bayesian analysis revealed that R. amblyommatis infection was positively associated with deciduous, evergreen, and mixed forests, and negatively associated with hay and pasture fields, and emergent herbaceous wetlands. Rickettsia parkeri infection was positively associated with deciduous, mixed, and evergreen forests, herbaceous vegetation, cultivated cropland, woody wetlands, and emergent herbaceous wetlands, and negatively associated with hay and pasture fields. CONCLUSIONS: This is the first study to evaluate the eco-epidemiological factors driving tick pathogenicity in South Carolina. The negative interactions between SFGR species suggest the possible inhibition between the two pathogens tested, which could have important public health implications. Moreover, land-use classification factors revealed environments associated with tick pathogenicity, highlighting the need for tick vector control in these areas.


Assuntos
Ácaros e Carrapatos , Ixodidae , Infecções por Rickettsia , Rickettsia , Carrapatos , Animais , Carrapatos/microbiologia , South Carolina/epidemiologia , Teorema de Bayes , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/microbiologia , Ixodidae/microbiologia
18.
Am J Trop Med Hyg ; 110(3): 491-496, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38295420

RESUMO

The threats from vector-borne pathogens transmitted by ticks place people (including deployed troops) at increased risk for infection, frequently contributing to undifferentiated febrile illness syndromes. Wild and domesticated animals are critical to the transmission cycle of many tick-borne diseases. Livestock can be infected by ticks, and serve as hosts to tick-borne diseases such as rickettsiosis. Thus, it is necessary to identify the tick species and determine their potential to transmit pathogens. A total of 1,493 adult ticks from three genera-Amblyomma, Hyalomma, and Rhipicephalus-were identified using available morphological keys and were pooled (n = 541) by sex and species. Rickettsia species were detected in 308 of 541 (56.9%) pools by genus-specific quantitative polymerase chain reaction assay (Rick17b). Furthermore, sequencing of the outer membrane protein A and B genes (ompA and ompB) of random samples of Rickettsia-positive samples led to the identification of Rickettsia aeschlimannii and Rickettsia africae with most R. africae DNA (80.2%) detected in pools of Amblyomma variegatum. We report the first molecular detection and identification of the rickettsial pathogens R. africae and R. aeschlimannii in ticks from Ghana. Our findings suggest there is a need to use control measures to prevent infections from occurring among human populations in endemic areas in Ghana. This study underscores the importance of determining which vector-borne pathogens are in circulation in Ghana. Further clinical and prevalence studies are needed to understand more comprehensively the clinical impact of these rickettsial pathogens contributing to human disease and morbidity in Ghana.


Assuntos
Ixodidae , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Adulto , Humanos , Carrapatos/microbiologia , Gana/epidemiologia , Rickettsia/genética , Doenças Transmitidas por Carrapatos/microbiologia
19.
Infect Immun ; 92(2): e0051523, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38206007

RESUMO

Rickettsia parkeri is a pathogen of public health concern and transmitted by the Gulf Coast tick, Amblyomma maculatum. Rickettsiae are obligate intracellular bacteria that enter and replicate in diverse host cells. Rickettsial outer membrane protein B (OmpB) functions in bacterial adhesion, invasion, and avoidance of cell-autonomous immunity in mammalian cell infection, but the function of OmpB in arthropod infection is unknown. In this study, the function of R. parkeri OmpB was evaluated in the tick host. R. parkeri wild-type and R. parkeri ompBSTOP::tn (non-functional OmpB) were capillary fed to naïve A. maculatum ticks to investigate dissemination in the tick and transmission to vertebrates. Ticks exposed to R. parkeri wild-type had greater rickettsial loads in all organs than ticks exposed to R. parkeri ompBSTOP::tn at 12 h post-capillary feeding and after 1 day of feeding on host. In rats that were exposed to R. parkeri ompBSTOP::tn-infected ticks, dermal inflammation at the bite site was less compared to R. parkeri wild-type-infected ticks. In vitro, R. parkeri ompBSTOP::tn cell attachment to tick cells was reduced, and host cell invasion of the mutant was initially reduced but eventually returned to the level of R. parkeri wild-type by 90 min post-infection. R. parkeri ompBSTOP::tn and R. parkeri wild-type had similar growth kinetics in the tick cells, suggesting that OmpB is not essential for R. parkeri replication in tick cells. These results indicate that R. parkeri OmpB functions in rickettsial attachment and internalization to tick cells and pathogenicity during tick infection.


Assuntos
Ixodidae , Rickettsia , Carrapatos , Ratos , Animais , Carrapatos/microbiologia , Ixodidae/microbiologia , Proteínas de Membrana , Mamíferos
20.
Sci Rep ; 14(1): 2465, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291133

RESUMO

A. phagocytophilum is a zoonotic and tick-borne bacterium, threatening human and animal health. Many questions persist concerning the variability of strains and the mechanisms governing the interactions with its different hosts. These gaps can be explained by the difficulty to cultivate and study A. phagocytophilum because of its strict intracellular location and the lack of specific tools, in particular monoclonal antibodies, currently unavailable. The objective of our study was to develop DNA aptamers against A. phagocytophilum, or molecules expressed during the infection, as new study and/or capture tools. Selecting aptamers was a major challenge due to the strict intracellular location of the bacterium. To meet this challenge, we set up a customized selection protocol against an enriched suspension of A. phagocytophilum NY18 strain, cultivated in HL-60 cells. The implementation of SELEX allowed the selection of three aptamers, characterized by a high affinity for HL-60 cells infected with A. phagocytophilum NY18 strain. Interestingly, the targets of these three aptamers are most likely proteins expressed at different times of infection. The selected aptamers could contribute to increase our understanding of the interactions between A. phagocytophilum and its hosts, as well as permit the development of new diagnostic, therapeutic or drug delivery appliances.


Assuntos
Anaplasma phagocytophilum , Carrapatos , Animais , Humanos , Anaplasma phagocytophilum/genética , Extratos Celulares , Carrapatos/microbiologia , Células HL-60
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...